On the periodic Schrödinger-Debye equation

نویسنده

  • Alexander Arbieto
چکیده

We study local and global well-posedness of the initial value problem for the Schrödinger-Debye equation in the periodic case. More precisely, we prove local well-posedness for the periodic Schrödinger-Debye equation with subcritical nonlinearity in arbitrary dimensions. Moreover, we derive a new a priori estimate for the H norm of solutions of the periodic Schrödinger-Debye equation. A novel phenomena obtained as a by-product of this a priori estimate is the global well-posedness of the periodic Schrödinger-Debye equation in dimensions 1, 2 and 3 without any smallness hypothesis of the H norm of the initial data in the “focusing” case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on the Interaction of Dioxovanadium(V) with Nitrilotriacetic Acid at Different Ionic Strengths by Using Extended Debye-Hiickel Equation

In this research complexation of dioxovanadium(V) with nitrilotriacetic acid (NTA) at differentionic strengths (0.1 to 1.0 mol dm-3) of sodium perchlorate as supporting electrolyte and pH rangeof 1.00-2.50 at 25 °C has been investigated by a combination of potentiometric and UVspectrophotometric measurements. Stability constants of two species, V0211L- and VO2H2L havebeen calculated. Ionic stre...

متن کامل

Quasi-periodic solutions in a nonlinear Schrödinger equation

In this paper, one-dimensional (1D) nonlinear Schrödinger equation iut − uxx +mu+ |u|4u= 0 with the periodic boundary condition is considered. It is proved that for each given constant potential m and each prescribed integer N > 1, the equation admits a Whitney smooth family of small amplitude, time quasi-periodic solutions with N Diophantine frequencies. The proof is based on a partial Birkhof...

متن کامل

Quasi-Periodic Solutions for 1D Schrödinger Equation with the Nonlinearity |u|2pu∗

In this paper, one-dimensional (1D) nonlinear Schrödinger equation iut − uxx + |u|2pu= 0, p ∈N, with periodic boundary conditions is considered. It is proved that the above equation admits small-amplitude quasi-periodic solutions corresponding to 2-dimensional invariant tori of an associated infinite-dimensional dynamical system. The proof is based on infinite-dimensional KAM theory, partial no...

متن کامل

On existence of dark solitons in cubic-quintic nonlinear Schrödinger equation with a periodic potential

A proof of existence of stationary dark soliton solutions of the cubic-quintic nonlinear Schrödinger equation with a periodic potential is given. It is based on the interpretation of the dark soliton as a heteroclinic on the Poincaré map.

متن کامل

Quasi-periodic Solutions of 1d Nonlinear Schrödinger Equation with a Multiplicative Potential

This paper deals with one-dimensional (1D) nonlinear Schrödinger equation with a multiplicative potential, subject to Dirichlet boundary conditions. It is proved that for each prescribed integer b > 1, the equation admits smallamplitude quasi-periodic solutions, whose b-dimensional frequencies are small dilation of a given Diophantine vector. The proof is based on a modified infinitedimensional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008